학술논문

Transcriptome signatures of host tissue infected with African swine fever virus reveal differential expression of associated oncogenes.
Document Type
Article
Source
Archives of Virology. Mar2024, Vol. 169 Issue 3, p1-13. 13p.
Subject
Language
ISSN
0304-8608
Abstract
African swine fever (ASF) has emerged as a threat to swine production worldwide. Evasion of host immunity by ASF virus (ASFV) is well understood. However, the role of ASFV in triggering oncogenesis is still unclear. In the present study, ASFV-infected kidney tissue samples were subjected to Illumina-based transcriptome analysis. A total of 2463 upregulated and 825 downregulated genes were differentially expressed (p < 0.05). A literature review revealed that the majority of the differentially expressed host genes were key molecules in signaling pathways involved in oncogenesis. Bioinformatic analysis indicated the activation of certain oncogenic KEGG pathways, including basal cell carcinoma, breast cancer, transcriptional deregulation in cancer, and hepatocellular carcinoma. Analysis of host-virus interactions revealed that the upregulated oncogenic RELA (p65 transcription factor) protein of Sus scrofa can interact with the A238L (hypothetical protein of unknown function) of ASFV. Differential expression of oncogenes was confirmed by qRT-PCR, using the H3 histone family 3A gene (H3F3A) as an internal control to confirm the RNA-Seq data. The levels of gene expression indicated by qRT-PCR matched closely to those determined through RNA-Seq. These findings open up new possibilities for investigation of the mechanisms underlying ASFV infection and offer insights into the dynamic interaction between viral infection and oncogenic processes. However, as these investigations were conducted on pigs that died from natural ASFV infection, the role of ASFV in oncogenesis still needs to be investigated in controlled experimental studies. [ABSTRACT FROM AUTHOR]