학술논문

Gut microbiome signature of metabolically healthy obese individuals according to anthropometric, metabolic and inflammatory parameters.
Document Type
Article
Source
Scientific Reports. 2/11/2024, Vol. 14 Issue 1, p1-12. 12p.
Subject
*GUT microbiome
*FALSE discovery rate
*OBESITY
*MICROBIAL diversity
*EXTRACELLULAR vesicles
*OVERWEIGHT persons
*CALPROTECTIN
*MICROSATELLITE repeats
Language
ISSN
2045-2322
Abstract
In this study, we investigated the characteristics of gut microbiome in the metabolically healthy obese (MHO) patients, and how they correlate with metabolic and inflammatory profiles. A total of 120 obese people without metabolic comorbidities were recruited, and their clinical phenotypes, metabolic and inflammatory parameters were analysed. The faecal microbial markers originating from bacterial cell and extracellular vesicle (EV) were profiled using 16S rDNA sequencing. The total study population could be classified into two distinct enterotypes (enterotype I: Prevotellaceae-predominant, enterotype II: Akkermansia/Bacteroides-predominant), based on their stool EV-derived microbiome profile. When comparing the metabolic and inflammatory profiles, subjects in enterotype I had higher levels of serum IL-1β [false discovery rate (FDR) q = 0.050] and had a lower level of microbial diversity than enterotype II (Wilcoxon rank-sum test p < 0.01). Subjects in enterotype I had relatively higher abundance of Bacteroidetes, Prevotellaceae and Prevotella-derived EVs, and lower abundance of Actinobacteria, Firmicutes, Proteobacteria, Akkermansia and Bacteroides-derived EVs (FDR q < 0.05). In conclusion, HMO patients can be categorised into two distinct enterotypes by the faecal EV-derived microbiome profile. The enterotyping may be associated with different metabolic and inflammatory profiles. Further studies are warranted to elucidate the long-term prognostic impact of EV-derived microbiome in the obese population. [ABSTRACT FROM AUTHOR]