학술논문

3D printed polylactide‐based zirconia‐toughened alumina composites: fabrication, mechanical, and in vitro evaluation.
Document Type
Article
Source
International Journal of Applied Ceramic Technology. Mar2024, Vol. 21 Issue 2, p957-971. 15p.
Subject
Language
ISSN
1546-542X
Abstract
Fused deposition modeling (FDM) has been a commonly used technique in the fabrication of geometrically complex biodegradable scaffolds for bone tissue engineering. Generally, either individual polylactide (PLA) or its combination with calcium phosphates or bioglass has been employed to design scaffolds through the principles of FDM. In this study, FDM protocol has been employed to design 3D printed PLA/zirconia‐toughened alumina (ZTA). A series of PLA/ZTA combinations have been attempted to determine the feasibility of the resultant in filament extrusion and their subsequent capacity to obtain a stable 3D printed component. A maximum of 80 wt.% PLA and 20 wt.% ZTA has been determined as an optimum combination to yield a stable 3D structure beyond which an enhanced ZTA content in the PLA matrix yielded a fragile filament that lacked effectiveness in 3D printing. 5 and 10 wt.% of ZTA addition in the PLA matrix produced a better 3D design that reasonably displayed good mechanical properties. Depending on the ceramic content, a homogeneous dispersion of the constituent elements representative of ZTA has been determined throughout the PLA matrix. Simulation studies through finite element analysis (FEA) exhibited good corroboration with the test results obtained from the mechanical studies. [ABSTRACT FROM AUTHOR]