학술논문

Improved Extratropical North Atlantic Atmosphere–Ocean Variability with Increasing Ocean Model Resolution.
Document Type
Article
Source
Journal of Climate. Dec2023, Vol. 36 Issue 24, p8403-8424. 22p.
Subject
*ATLANTIC meridional overturning circulation
*OCEAN circulation
*OCEAN temperature
*OCEAN
*OCEAN waves
*ATMOSPHERIC circulation
Language
ISSN
0894-8755
Abstract
North Atlantic atmosphere–ocean variability is assessed in climate model simulations from HighResMIP that have low resolution (LR) or high resolution (HR) in their atmosphere and ocean model components. It is found that some of the LR simulations overestimate the low-frequency variability of subpolar sea surface temperature (SST) anomalies and underestimate its correlation with the NAO compared to ERA5. These deficiencies are significantly reduced in the HR simulations, and it is shown that the improvements are related to a reduction of intrinsic (non-NAO-driven) variability of the subpolar ocean circulation. To understand the cause of the overestimated intrinsic subpolar ocean variability in the LR simulations, a link is demonstrated between the amplitude of the subpolar ocean variability and the mean state of the Labrador–Irminger Seas. Supporting previous studies, the Labrador–Irminger Seas tend to be colder and fresher in the LR simulations compared to the HR simulations and oceanic observations from EN4. This promotes upper-ocean density anomalies in this region to be more salinity-controlled in the LR simulations versus more temperature-controlled in the HR simulations and EN4 observations. It is argued that this causes the excessive subpolar ocean variability in the LR simulations by favoring a positive feedback between subpolar upper-ocean salinity and Atlantic meridional overturning circulation (AMOC) anomalies, rather than a negative feedback between subpolar SST and AMOC anomalies as in the HR simulations. The findings overall suggest that the subpolar ocean mean state impacts the variability of the ocean circulation and SSTs, including their relationship with the atmospheric circulation, in the extratropical North Atlantic. [ABSTRACT FROM AUTHOR]