학술논문

Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors.
Document Type
Article
Source
Journal of Virology. Nov2023, Vol. 97 Issue 11, p1-21. 21p.
Subject
*DNA repair
*CELL transformation
*ADENOVIRUSES
*CELL culture
*UBIQUITINATION
*RADIOLABELING
*CELL cycle
Language
ISSN
0022-538X
Abstract
The human adenovirus species C type 5 (HAdV-C5) early region 1B 55 kDa (E1B-55K) protein is a multifunctional protein that promotes viral replication and adenovirus-mediated cell transformation through various mechanisms that primarily counteract host intrinsic and innate immunity. These include post-translational activities that exploit the host cell ubiquitin and small ubiquitin-like modifier (SUMO) conjugation machineries to regulate antiviral cellular restriction factors. However, despite significant advancements in this field, several underlying mechanisms governing these processes remain unidentified to date. Here, we performed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative SUMO proteomics to better understand cellular consequences of E1B-55K-mediated host cell modulation and adenovirus infection in general. We assessed cellular proteins for abundance changes and SUMO2 conjugate proteome changes during infection with wild-type HAdV-C5 or an E1B-55K deletion mutant. We provide evidence that changes in the SUMOylated proteome have the potential to regulate the DNA damage response, cell cycle control, chromatin assembly, and gene transcription and present these data as a resource for the research community. Strikingly, we identified a SUMO-dependent, ubiquitin-mediated degradation mechanism for some SUMO substrates, suggesting that E1B-55K may use multiple mechanisms to alter the activity of restrictive cellular pathways. [ABSTRACT FROM AUTHOR]