학술논문

The amide derivative of anticopalic acid induces non-apoptotic cell death in triple-negative breast cancer cells by inhibiting FAK activation.
Document Type
Article
Source
Scientific Reports. 11/20/2023, Vol. 13 Issue 1, p1-18. 18p.
Subject
*TRIPLE-negative breast cancer
*CANCER cells
*CELL death
*WESTERN immunoblotting
*ACID derivatives
*AMIDE derivatives
*AMIDES
*BREAST
Language
ISSN
2045-2322
Abstract
Anticopalic acid (ACP), a labdane type diterpenoid obtained from Kaempferia elegans rhizomes, together with 21 semi-synthetic derivatives, were evaluated for their cancer cytotoxic activity. Most derivatives displayed higher cytotoxic activity than the parent compound ACP in a panel of nine cancer cell lines. Among the tested compounds, the amide 4p showed the highest cytotoxic activity toward leukemia cell lines, HL-60 and MOLT-3, with IC50 values of 6.81 ± 1.99 and 3.72 ± 0.26 µM, respectively. More interestingly, the amide derivative 4l exhibited cytotoxic activity with an IC50 of 13.73 ± 0.04 µM against the MDA-MB-231 triple-negative breast cancer cell line, which is the most aggressive type of breast cancer. Mechanistic studies revealed that 4l induced cell death in MDA-MB-231 cells through non-apoptotic regulated cell death. In addition, western blot analysis showed that compound 4l decreased the phosphorylation of FAK protein in a concentration-dependent manner. Molecular docking simulations elucidated that compound 4l could potentially inhibit FAK activation by binding to a pocket of FAK kinase domain. The data suggested that compound 4l could be a potential FAK inhibitor for treating triple-negative breast cancer and worth being further investigated. [ABSTRACT FROM AUTHOR]