학술논문

Sex-differences in proteasome-dependent K48-polyubiquitin signaling in the amygdala are developmentally regulated in rats.
Document Type
Article
Source
Biology of Sex Differences. 11/10/2023, Vol. 14 Issue 1, p1-15. 15p.
Subject
*AMYGDALOID body
*PUBERTY
*UBIQUITINATION
*POST-traumatic stress disorder
*RATS
*PROTEOLYSIS
*DNA methylation
*EMOTION regulation
Language
ISSN
2042-6410
Abstract
Background: Sex differences have been observed in several brain regions for the molecular mechanisms involved in baseline (resting) and memory-related processes. The ubiquitin proteasome system (UPS) is a major protein degradation pathway in cells. Sex differences have been observed in lysine-48 (K48)-polyubiquitination, the canonical degradation mark of the UPS, both at baseline and during fear memory formation within the amygdala. Here, we investigated when, how, and why these baseline sex differences arise and whether both sexes require the K48-polyubiquitin mark for memory formation in the amygdala. Methods: We used a combination of molecular, biochemical and proteomic approaches to examine global and protein-specific K48-polyubiquitination and DNA methylation levels at a major ubiquitin coding gene (Uba52) at baseline in the amygdala of male and female rats before and after puberty to determine if sex differences were developmentally regulated. We then used behavioral and genetic approaches to test the necessity of K48-polyubiquitination in the amygdala for fear memory formation. Results: We observed developmentally regulated baseline differences in Uba52 methylation and total K48-polyubiquitination, with sexual maturity altering levels specifically in female rats. K48-polyubiquitination at specific proteins changed across development in both male and female rats, but sex differences were present regardless of age. Lastly, we found that genetic inhibition of K48-polyubiquitination in the amygdala of female, but not male, rats impaired fear memory formation. Conclusions: These results suggest that K48-polyubiquitination differentially targets proteins in the amygdala in a sex-specific manner regardless of age. However, sexual maturity is important in the developmental regulation of K48-polyubiquitination levels in female rats. Consistent with these data, K48-polyubiquitin signaling in the amygdala is selectively required to form fear memories in female rats. Together, these data indicate that sex-differences in baseline K48-polyubiquitination within the amygdala are developmentally regulated, which could have important implications for better understanding sex-differences in molecular mechanisms involved in processes relevant to anxiety-related disorders such as post-traumatic stress disorder (PTSD). Plain language summary: Male and female brains have differences in size, development, and cellular processes. Further, males and females have differences in likelihood of developing certain anxiety-related disorders, such as post-traumatic stress disorder (PTSD). We previously observed sex differences in a cellular mechanism that controls the destruction of proteins via tagging by the protein modifier ubiquitin in resting and behaviorally trained animals. We found that adult female rats "ubiquitinated" different proteins during learning and had more ubiquitin than male rats at rest in the amygdala, the brain region that controls emotional regulation. This study investigated if the sex difference in ubiquitin at rest changed as animals age, including the proteins being ubiquitinated and how the amount of ubiquitin was controlled. We also investigated if male and female rats need ubiquitin for memory formation. We found that males and females ubiquitinate different proteins, but that aging also contributes to changes in this, suggesting that sexual maturity may be important for controlling the amount of ubiquitin in females. Lastly, we found that only female rats needed ubiquitin in the amygdala for forming a fear memory. These results are important for understanding the role of ubiquitin activity at different developmental stages and for forming fear-based memories in both sexes. Since females are more likely to develop PTSD than males, these data could help understand how different cellular processes work together in PTSD development to create better treatment options. Highlights: K48-polyubiquitination, the canonical protein degradation mark, differentially targets proteins at baseline in the amygdala of male and female rats across development. DNA methylation at Uba52, a major ubiquitin coding gene, and overall K48-polyubiquitination levels are developmentally regulated in female rats. Female, but not male, rats require K48-polyubiquitin signaling in the amygdala for fear memory formation, suggesting males may utilize another linkage for protein degradation processes during fear memory formation. [ABSTRACT FROM AUTHOR]