학술논문

L-Arginine-eNOS-NO Functional System in Brain Damage and Cognitive Impairments in Cerebral Small Vessel Disease.
Document Type
Article
Source
International Journal of Molecular Sciences. Oct2023, Vol. 24 Issue 19, p14537. 15p.
Subject
*CEREBRAL small vessel diseases
*ERYTHROCYTE deformability
*BLOOD-brain barrier
*CONTRAST-enhanced magnetic resonance imaging
*BRAIN damage
*COGNITION disorders
*WHITE matter (Nerve tissue)
Language
ISSN
1661-6596
Abstract
Cerebral small vessel disease (CSVD) is a significant cause of cognitive impairment (CI), disability, and mortality. The insufficient effectiveness of antihypertensive therapy in curbing the disease justifies the search for potential targets for modifying therapy and indicators supporting its use. Using a laser-assisted optical rotational cell analyzer (LORRCA, Mechatronics, The Netherlands), the rheological properties and deformability of erythrocytes before and after incubation with 10 μmol/L of L-arginine, the nitric oxide (NO) donor, blood–brain barrier (BBB) permeability assessed by dynamic contrast-enhanced MRI, clinical, and MRI signs were studied in 73 patients with CSVD (48 women, mean age 60.1 ± 6.5 years). The control group consisted of 19 volunteers (14 women (73.7%), mean age 56.9 ± 6.4 years). The erythrocyte disaggregation rate (y-dis) after incubation with L-arginine showed better performance than other rheological characteristics in differentiating patients with reduced NO bioavailability/NO deficiency by its threshold values. Patients with y-dis > 113 s−1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in grey matter and normal-appearing white matter (NAWM). A test to assess changes in the erythrocyte disaggregation rate after incubation with L-arginine can be used to identify patients with impaired NO bioavailability. L-arginine may be part of a therapeutic strategy for CSVD with CI. [ABSTRACT FROM AUTHOR]