학술논문

Phytotoxicity of Rich Oxygenated Terpenes Essential Oil of Prosopis farcta against the Weed Dactyloctenium aegyptium.
Document Type
Article
Source
Separations (2297-8739). Jun2023, Vol. 10 Issue 6, p361. 11p.
Subject
*WEED control
*ESSENTIAL oils
*WEEDS
*TERPENES
*MESQUITE
*HERBICIDES
*PHYTOTOXICITY
Language
ISSN
2297-8739
Abstract
Weeds are considered the main reason for crop yield loss in the world. Weed control and management include various treatments such as cultural, physical, chemical, and biological methods. Chemical control of weeds is the most common method; however, the application of commercial synthetic herbicides caused several dangerous hazards in the environment including the appearance of resistant weed biotypes. Prosopis farcta (Banks & Sol.) J.F.Macbr. (Family: Fabaceae), is a common weed plant in the Middle East, where it is hard to eliminate due to its deep and overlapped roots. On the other side, it has many traditional uses around the world. Herein, the essential oil (EO) of P. farcta above-ground parts was extracted via hydrodistillation techniques and then analyzed using gas chromatography-mass spectroscopy (GC-MS). From the GC-MS analysis, 47 compounds were identified with a relative concentration of 98.02%, including terpenes as the main components (95.08%). From overall identified compounds, cubenol (19.07%), trans-chrysanthenyl acetate (17.69%), torreyol (8.28%), davana ether (3.50%), camphor (3.35%), and farnesyl acetone (3.13%) represented the abundant constituents. Furthermore, the phytotoxic activity of the P. farcta EO was assessed against the weed Dactyloctenium aegyptium (L.) Willd. The EO of P. farcta, at a concentration of 100 µL L−1, significantly inhibited the germination, seedling shoot growth, and seedling root growth by 64.1, 64.0, and 73.4%, respectively. The results exhibited that the seedling root growth is the most affected followed by the seed germination and seedling shoot growth with respective IC50 at 64.5, 80.5, and 92.9 µL L−1. It can be concluded that weeds are not absolutely harmful, but they may have beneficial uses, such as, for example as a source of phytochemicals with application in weed control practices (bioherbicides). It is advised to conduct additional research to characterize the allelopathic action of the major chemicals in their pure form, either alone or in combination, against a variety of weeds. [ABSTRACT FROM AUTHOR]