학술논문

Wound healing performance of PVA/PCL based electrospun nanofiber incorporated green synthetized CuNPs and Quercus infectoria extracts.
Document Type
Article
Source
Journal of Biomaterials Science -- Polymer Edition. Feb2023, Vol. 34 Issue 3, p277-301. 25p.
Subject
*WOUND healing
*NANOFIBERS
*SUSTAINABLE chemistry
*EXTRACTS
*COPPER
*POLYVINYL alcohol
Language
ISSN
0920-5063
Abstract
In this study, copper nanoparticles (CuNPs) were synthetized through green chemistry approach using C. officinalis flowers extract. The biosynthetized nanoparticles were characterized by FESEM, XRD, DLS and FTIR analysis. Subsequently, PCL nanofiber was fabricated as first supportive layer by electrospinning method. Afterward, PVA/Quercus infectoria galls (QLG) extracts/biosynthetized CuNPs blending solution was electrospinned as second bioactive topical layer. The morphology, physicochemical properties and biological characteristics of the produced PCL, PCL/PVA, PCL/PVA/CuNPs, PCL/PVA/QLG and PCL/PVA/QLG/CuNPs were investigated. Eventually, in vivo wound healing effectiveness was examined. Histologic investigation was carried out for visualization of the healing wounds architecture in different treated groups. FESEM, XRD and DLS assays confirmed the successful synthesis of CuNPs in range of 40–70 nm and FTIR spectrum approve the presence of functional constituents of C. officinalis extract on synthesized CuNPs. The incorporation of CuNPs and QLG extract into PCL/PVA based nanofibers improved their biological capabilities and physicochemical properties. Furthermore, PCL/PVA/QLG/CuNPs illustrated significant wound healing potentials and excellent antibacterial function against at wounds infected with MRSA. Histological assay demonstrated complete wound healing and less inflammation on day 10th. These outcomes recommended the utilization of PCL/PVA/QLG/CuNPs as a novel promising wound dressings with considerable antibacterial features. [ABSTRACT FROM AUTHOR]