학술논문

High Efficiency Regeneration System from Blueberry Leaves and Stems.
Document Type
Article
Source
Life (2075-1729). Jan2023, Vol. 13 Issue 1, p242. 17p.
Subject
*BLUEBERRIES
*REGENERATION (Biology)
*TISSUE culture
*WOODY plants
*ECONOMIC efficiency
*PLANT growth
Language
ISSN
2075-1729
Abstract
The main propagation approach is tissue culture in blueberries, and tissue culture is an effective and low-cost method with higher economic efficiency in blueberries. However, there is a lack of stable and efficient production systems of industrialization of tissue culture in blueberries. In this study, the high-efficiency tissue culture and rapid propagation technology system were established based on blueberry leaves and stems. The optimal medium for callus induction was WPM (woody plant medium) containing 2.0 mg/L Forchlorfenuron (CPPU), 0.2 mg/L 2-isopentenyladenine (2-ip) with a 97% callus induction rate and a callus differentiation rate of 71% by using blueberry leaves as explants. The optimal secondary culture of the leaf callus medium was WPM containing 3.0 mg/L CPPU with an increment coefficient of 24%. The optimal bud growth medium was WPM containing 1.0 mg/L CPPU, 0.4 mg/L 2-ip, with which the growth of the bud was better, stronger and faster. The optimal rooting medium was 1/2 Murashige and Skoog (1/2MS) medium containing 2.0 mg/L naphthylacetic acid (NAA), with which the rooting rate was 90% with shorter rooting time and more adventitious root. In addition, we established a regeneration system based on blueberry stems. The optimal preculture medium in blueberry stem explants was MS medium containing 2-(N-morpholino) ethanesulfonic acid (MES) containing 0.2 mg/L indole-3-acetic acid (IAA), 0.1 mg/L CPPU, 100 mg/L NaCl, with which the germination rate of the bud was 93%. The optimal medium for fast plant growth was MS medium containing MES containing 0.4 mg/L zeatin (ZT), 1 mg/L putrescine, 1 mg/L spermidine, 1 mg/L spermidine, which had a good growth state and growth rate. The optimal cultivation for plantlet growth was MS medium containing MES containing 0.5 mg/L isopentene adenine, with which the plantlet was strong. The optimal rooting medium for the stem was 1/2MS medium containing 2.0 mg/L NAA, with which the rooting rate was 93% with a short time and more adventitious root. In conclusion, we found that stem explants had higher regeneration efficiency for a stable and efficient production system of industrialization of tissue culture. This study provides theoretical guidance and technical support in precision breeding and standardization and industrialization in the blueberry industry. [ABSTRACT FROM AUTHOR]