학술논문

Superenhancer-activation of KLHDC8A drives glioma ciliation and hedgehog signaling.
Document Type
Article
Source
Journal of Clinical Investigation. 1/17/2023, Vol. 133 Issue 2, p1-17. 18p.
Subject
*HEDGEHOG signaling proteins
*CANCER stem cells
*GLIOMAS
*TUMOR growth
*GENE enhancers
*STEM cells
Language
ISSN
0021-9738
Abstract
Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain-containing gene (KLHDC8A) with a previously unknown function as an epigenetically-driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound Chaperonin-Containing TCP1 (CCT) to promote assembly of primary cilia to activate Hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and Hedgehog signaling. Combinatorial targeting of Aurora B/C Kinase and Hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the Hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment. [ABSTRACT FROM AUTHOR]