학술논문

Structure of diopside, enstatite, and magnesium aluminosilicate glasses: A joint approach using neutron and x-ray diffraction and solid-state NMR.
Document Type
Article
Source
Journal of Chemical Physics. 12/7/2022, Vol. 157 Issue 21, p1-22. 22p.
Subject
*MAGNESIUM isotopes
*NEUTRON diffraction
*NUCLEAR magnetic resonance spectroscopy
*DIOPSIDE
*ENSTATITE
*MAGIC angle spinning
*X-ray diffraction
Language
ISSN
0021-9606
Abstract
Neutron diffraction with magnesium isotope substitution, high energy x-ray diffraction, and 29Si, 27Al, and 25Mg solid-state nuclear magnetic resonance (NMR) spectroscopy were used to measure the structure of glassy diopside (CaMgSi2O6), enstatite (MgSiO3), and four (MgO)x(Al2O3)y(SiO2)1−x−y glasses, with x = 0.375 or 0.25 along the 50 mol. % silica tie-line (1 − x − y = 0.5) or with x = 0.3 or 0.2 along the 60 mol. % silica tie-line (1 − x − y = 0.6). The bound coherent neutron scattering length of the isotope 25Mg was remeasured, and the value of 3.720(12) fm was obtained from a Rietveld refinement of the powder diffraction patterns measured for crystalline 25MgO. The diffraction results for the glasses show a broad asymmetric distribution of Mg–O nearest-neighbors with a coordination number of 4.40(4) and 4.46(4) for the diopside and enstatite glasses, respectively. As magnesia is replaced by alumina along a tie-line with 50 or 60 mol. % silica, the Mg–O coordination number increases with the weighted bond distance as less Mg2+ ions adopt a network-modifying role and more of these ions adopt a predominantly charge-compensating role. 25Mg magic angle spinning (MAS) NMR results could not resolve the different coordination environments of Mg2+ under the employed field strength (14.1 T) and spinning rate (20 kHz). The results emphasize the power of neutron diffraction with isotope substitution to provide unambiguous site-specific information on the coordination environment of magnesium in disordered materials. [ABSTRACT FROM AUTHOR]