학술논문

Simple, sensitive, and cost-effective detection of wAlbB Wolbachia in Aedes mosquitoes, using loop mediated isothermal amplification combined with the electrochemical biosensing method.
Document Type
Article
Source
PLoS Neglected Tropical Diseases. 5/13/2022, Vol. 16 Issue 5, p1-21. 21p.
Subject
*WOLBACHIA
*AEDES
*MOSQUITOES
*AEDES aegypti
*ARBOVIRUS diseases
Language
ISSN
1935-2727
Abstract
Background: Wolbachia is an endosymbiont bacterium generally found in about 40% of insects, including mosquitoes, but it is absent in Aedes aegypti which is an important vector of several arboviral diseasesdengue, chikungunya, zika, and yellow fever. The evidence that Wolbachia trans-infected Ae. aegypti mosquitoes lost their vectorial competence and became less capable of transmitting arboviruses to human hosts highlights the potential of using Wolbachia-based approaches for prevention and control of arboviral diseases. Recently, release of Wolbachia trans-infected Ae. aegypti has been deployed widely in many countries for the control of mosquito-borne viral diseases. Field surveillance and monitoring of Wolbachia presence in released mosquitoes is important for the success of these control programs. So far, a number of studies have reported the development of loop mediated isothermal amplification (LAMP) assays to detect Wolbachia in mosquitoes, but the methods still have some specificity and cost issues. Methodology/Principal findings: We describe here the development of a LAMP assay combined with the DNA strand displacement-based electrochemical sensor (BIOSENSOR) method to detect wAlbB Wolbachia in trans-infected Ae. aegypti. Our developed LAMP primers used a low-cost dye detecting system and 4 oligo nucleotide primers which can reduce the cost of analysis while the specificity is comparable to the previous methods. The detection capacity of our LAMP technique was 1.4 nM and the detection limit reduced to 2.2 fM when combined with the BIOSENSOR. Our study demonstrates that a BIOSENSOR can also be applied as a stand-alone method for detecting Wolbachia; and it showed high sensitivity when used with the crude DNA extracts of macerated mosquito samples without DNA purification. Conclusions/Significance: Our results suggest that both LAMP and BIOSENSOR, either used in combination or stand-alone, are robust and sensitive. The methods have good potential for routine detection of Wolbachia in mosquitoes during field surveillance and monitoring of Wolbachia-based release programs, especially in countries with limited resources. Author summary: Mosquito-borne diseases such as dengue, chikungunya, zika, and yellow fever are transmitted to humans mainly by the bites of Aedes aegypti mosquitoes. Controlling the vectors of these diseases relies mostly on the use of insecticides. However, the efficiency has been reduced through the development of insecticide resistance in mosquitoes. Wolbachia is an endosymbiotic bacterium that is naturally found in 40% of insects, including mosquitoes. The bacterium can protect its insect hosts from viral infections and can also cause sterility in insect host populations, therefore, providing an opportunity to use it for human disease control. Application of a Wolbachia trans-infected mosquitoes needs simple, rapid and sensitive methods for detecting the bacteria in released mosquitoes. In this paper, we develop the methods of LAMP and BIOSENSORS for detecting wAlbB Wolbachia in mosquitoes. Our positive LAMP reaction can be visualized by color change from violet to blue at a sensitivity of ≥ 10 pg of genomic DNA. When used in combination with the BIOSENSOR method, the sensitivity increases a millionfold without losing specificity. Our study suggests that both developed methods, either used in combination or stand-alone, are efficient and cost-effective, hence, they could be applied for routine surveys of Wolbachia in mosquito control programs that use Wolbachia-based approaches. [ABSTRACT FROM AUTHOR]