학술논문

Postnatal depletion of serotonin affects the morphology of neurons and the function of the hippocampus in male rats.
Document Type
Article
Source
International Journal of Developmental Neuroscience. May2022, Vol. 82 Issue 3, p222-230. 9p.
Subject
*SEROTONIN
*HIPPOCAMPUS (Brain)
*DENTATE gyrus
*CEREBRAL cortex
*MORPHOLOGY
*RAPHE nuclei
*ENTORHINAL cortex
Language
ISSN
0736-5748
Abstract
Serotonin (5-HT) is an essential neurotransmitter for the refined organization of the cerebral cortex. Studies have suggested that altered serotonin signaling contributes to cognitive impairment and psychiatric disorders. However, the exact role of this neurotransmitter on the development of hippocampal neurons is not recognized. Here we aimed to examine the effects of the para-chlorophenylalanine (PCPA; 100 mg/kg/daily, s.c. during the postnatal days 10-20), a reversible inhibitor of 5-HT synthesis, on the serotonin level of the hippocampal and prefrontal cortex. We also focused on the morphology of the neurons in the hippocampus and spatial learning and memory. Our results indicated that the administration of PCPA led to a decrease in serotonin levels in the hippocampus and prefrontal cortex. Postnatal serotonin depletion also induced subtle alterations in the neuronal populations of the hippocampus and impaired spatial memory in the adulthood period of life. We found that critical developmental periods of serotonin depletion caused degeneration and swelling of neurons as well as significant neuronal loss in the hippocampal CA1, CA3, and dentate gyrus (DG) areas. Thus, serotonin, a strikingly important neurotransmitter, can affect neuronal morphology, development, and hippocampal-dependent memory. [ABSTRACT FROM AUTHOR]