학술논문

Study of Body Conformation of Carpet Wool Type Chitarangi Sheep of India using Principal Component Analysis.
Document Type
Article
Source
Indian Journal of Animal Research. Mar2022, Vol. 56 Issue 3, p375-379. 5p.
Subject
*PRINCIPAL components analysis
*SHEEP
*WOOL
*FACTOR analysis
*BODY size
Language
ISSN
0367-6722
Abstract
Background: The principal component analysis is applied to identify minimum number of combined variables that account for maximum portion of the variance existing in all variables studied. Chitarangi is a lesser known carpet type wool sheep distributed in Fazilka and Muktsar districts of Punjab, Sri Ganganagar district of Rajasthan and the adjoining areas. The information on body biometry is a prerequisite to characterize the lesser known sheep population available in the country. Hence, it is important to describe the body conformation by recording minimum number of biometric traits. Methods: Body biometry traits of Chitarangi sheep, a lesser known carpet quality wool producing sheep population were studied using Principal Component Analysis. The traits studied were body length (BL), height at wither (HW), chest girth (CG), paunch girth (PG), ear length (EL), face length (FL), face width (FW), tail length (TL) and adult body weight (BW). The data were collected on 297 ewes in the breeding tract of Chitarangi sheep. The descriptive statistics were determined for all the traits. The phenotypic correlations between different body biometric traits were estimated using partial correlations. Principal components were estimated using correlation matrix. Principal component analysis (PCA), a multivariate approach, is used when the recorded traits are highly correlated. Rotation of principal components was through the transformation of the components to approximate a simple structure. Factor analysis using oblique (promax) rotation was used. All the analysis was carried out using the SPSS statistical package. Result: The averages for body weight and biometry traits confirmed large size of Chitarangi animals. Most of the phenotypic correlations amongst the studied traits were positive and significant (p<0.01). The three components extracted from nine principal components accounted for 69.06% of the total variance. The first component, which described body size of ewes, accounted for 43.68% of the total variation with high loading for BW, CG, PG, HW, BL and FL. The components two and three explained 13.54 and 11.83% of total variance, respectively. The communalities ranged from 0.490 (FL) to 0.888 (PG). The lower communalities for face length indicated lower contribution of the trait to explain the total variation than others. The study indicates that principal components provided a means of reduction in number of biometric traits to explain body confirmation of adult female Chitarangi sheep. [ABSTRACT FROM AUTHOR]