학술논문

Maternal Relationships among Ancient and Modern Southern African Sheep: Newly Discovered Mitochondrial Haplogroups.
Document Type
Article
Source
Biology (2079-7737). Mar2022, Vol. 11 Issue 3, p428. 12p.
Subject
*SHEEP
*SHOTGUN sequencing
*SHEEP breeds
*MITOCHONDRIA
*SHEEP ranches
*GENETIC variation
*SHEEP farming
*INDIGENOUS peoples
Language
ISSN
2079-7737
Abstract
Simple Summary: The genetic diversity of southern African sheep remains under-studied. We present here the complete mitochondrial genomes of archaeological southern African sheep, as well as the genomes from three indigenous southern African breeds—Damara, Namaqua Afrikaner, and Ronderib Afrikaner. We show that southern African sheep exhibit limited genetic diversity which is consistent with our understanding of their migration south from northernmost Africa. Intriguingly, many of the modern sheep show close relationships with the archaeological sheep, implying an ancestor-descendant relationship. Similarly, the sheep that do not exhibit a close relationship with the archaeological sheep nonetheless cluster closely with each other and do not show a close relationship with European and Asian sheep. This suggests that they too are descendants of indigenous sheep and not the product of historic introductions of exotic breeds. We investigated the genetic diversity and historic relationships among southern African sheep as well as the relationships between them and sheep outside the continent by sourcing both archaeological and modern sheep samples. Archaeological sheep samples derived from the site Die Kelders 1, near Cape Town, date to approximately 1500 years ago. The modern samples were taken as ear snips from Damara, Namaqua Afrikaner, and Ronderib Afrikaner sheep on a farm in Prieska in the Northern Cape. Illumina sequencing libraries were constructed for both ancient and modern specimens. Ancient specimens were enriched for the mitochondrial genome using an in-solution hybridization protocol and modern specimens were subjected to shotgun sequencing. Sequences were mapped to the Ovis aries reference genome, assigned to haplogroups and subhaplogroups, and used to calculate a phylogenetic tree using previously published, geographically dispersed mitochondrial genome sheep sequences. Genetic diversity statistics show that southern African sheep have lower diversity than sheep in other regions. Phylogenetic analysis reveals that many modern southern African sheep are likely descended from prehistoric indigenous sheep populations and not from sheep imported from Europe during the historic period. [ABSTRACT FROM AUTHOR]