학술논문

Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics.
Document Type
Article
Source
PLoS Computational Biology. 1/19/2021, Vol. 17 Issue 1, p1-27. 27p. 1 Diagram, 5 Charts, 4 Graphs.
Subject
*MOSQUITO vectors
*DENGUE viruses
*DENGUE
*ARBOVIRUS diseases
*VECTOR-borne diseases
*VECTOR control
*INFECTIOUS disease transmission
*MOSQUITOES
Language
ISSN
1553-734X
Abstract
Heterogeneous exposure to mosquitoes determines an individual's contribution to vector-borne pathogen transmission. Particularly for dengue virus (DENV), there is a major difficulty in quantifying human-vector contacts due to the unknown coupled effect of key heterogeneities. To test the hypothesis that the reduction of human out-of-home mobility due to dengue illness will significantly influence population-level dynamics and the structure of DENV transmission chains, we extended an existing modeling framework to include social structure, disease-driven mobility reductions, and heterogeneous transmissibility from different infectious groups. Compared to a baseline model, naïve to human pre-symptomatic infectiousness and disease-driven mobility changes, a model including both parameters predicted an increase of 37% in the probability of a DENV outbreak occurring; a model including mobility change alone predicted a 15.5% increase compared to the baseline model. At the individual level, models including mobility change led to a reduction of the importance of out-of-home onward transmission (R, the fraction of secondary cases predicted to be generated by an individual) by symptomatic individuals (up to -62%) at the expense of an increase in the relevance of their home (up to +40%). An individual's positive contribution to R could be predicted by a GAM including a non-linear interaction between an individual's biting suitability and the number of mosquitoes in their home (>10 mosquitoes and 0.6 individual attractiveness significantly increased R). We conclude that the complex fabric of social relationships and differential behavioral response to dengue illness cause the fraction of symptomatic DENV infections to concentrate transmission in specific locations, whereas asymptomatic carriers (including individuals in their pre-symptomatic period) move the virus throughout the landscape. Our findings point to the difficulty of focusing vector control interventions reactively on the home of symptomatic individuals, as this approach will fail to contain virus propagation by visitors to their house and asymptomatic carriers. Author summary: Human mobility patterns can play an integral role in vector-borne disease dynamics by characterizing an individual's potential contacts with disease-transmitting vectors. Dengue virus is transmitted by a sedentary vector, but human mobility allows individuals to have contact with mosquitoes at their home and other houses they frequent (their activity space). When accounting for the decreased mobility of symptomatic dengue cases in an agent-based simulation model, however, we found a severely diminished role of the activity space in onward transmission. Those who received the majority of their mosquito contacts outside their home experienced decreases in expected bites and onward transmission when mobility changes were accounted for. Onward transmission was driven by a synergistic relationship between the number of mosquitoes in an individual's home and their biting suitability, where even those with the highest biting suitability would have limited contribution to transmission given a low number of household mosquitoes. Reactive vector control, which often targets symptomatic cases, could be effective for slowing onward transmission from these cases, but will fail to control virus transmission due to the disproportionate contribution of asymptomatic infections. [ABSTRACT FROM AUTHOR]