학술논문

Global discovery of human-infective RNA viruses: A modelling analysis.
Document Type
Article
Source
PLoS Pathogens. 11/30/2020, Vol. 16 Issue 11, p1-18. 18p.
Subject
*REGRESSION trees
*RNA viruses
*SOCIOECONOMIC factors
*MACHINE learning
*COMMUNICABLE diseases
*GROSS domestic product
*DISEASE vectors
Language
ISSN
1553-7366
Abstract
RNA viruses are a leading cause of human infectious diseases and the prediction of where new RNA viruses are likely to be discovered is a significant public health concern. Here, we geocoded the first peer-reviewed reports of 223 human RNA viruses. Using a boosted regression tree model, we matched these virus data with 33 explanatory factors related to natural virus distribution and research effort to predict the probability of virus discovery across the globe in 2010–2019. Stratified analyses by virus transmissibility and transmission mode were also performed. The historical discovery of human RNA viruses has been concentrated in eastern North America, Europe, central Africa, eastern Australia, and north-eastern South America. The virus discovery can be predicted by a combination of socio-economic, land use, climate, and biodiversity variables. Remarkably, vector-borne viruses and strictly zoonotic viruses are more associated with climate and biodiversity whereas non-vector-borne viruses and human transmissible viruses are more associated with GDP and urbanization. The areas with the highest predicted probability for 2010–2019 include three new regions including East and Southeast Asia, India, and Central America, which likely reflect both increasing surveillance and diversity of their virome. Our findings can inform priority regions for investment in surveillance systems for new human RNA viruses. Author summary: There is a lack of evidence on the factors driving the discovery of RNA viruses in general globally. Here, we recorded the initial discovery sites of all 223 human RNA viruses and revealed its global distribution pattern. By using a machine learning method, we found that the virus discovery was driven by a combination of variables describing socio-economic level, land use, climate and biodiversity, with GDP and GDP growth found to be the two leading predictors. We also predicted the probability of virus discovery in 2010–2019 across the globe, and identified three new areas (East and Southeast Asia, India, and Central America) in addition to the historical high-risk areas. The further stratified analyses (distinguishing viruses transmissible in humans or strictly zoonotic, and vector-borne or non-vector-borne) helped pinpoint the explanatory factors for the discovery of specific categories of viruses and confirm the plausibility of the model. The results of our study further understanding of the spatial distribution of human RNA virus discovery, and map the likelihood of further discoveries across the world. By identifying where new viruses are most likely to be discovered in the near future the study helps identify priority areas for surveillance. [ABSTRACT FROM AUTHOR]