학술논문

High-current laser-driven beams of relativistic electrons for high energy density research.
Document Type
Article
Source
Plasma Physics & Controlled Fusion. Nov2020, Vol. 62 Issue 11, p1-15. 15p.
Subject
*ENERGY density
*NUCLEAR reactions
*BREMSSTRAHLUNG
*PHOTON counting
*RELATIVISTIC electrons
*ELECTRON density
*ULTRASHORT laser pulses
*ELECTRON beams
Language
ISSN
0741-3335
Abstract
We report on enhanced laser driven electron beam generation in the multi MeV energy range that promises a tremendous increase of the diagnostic potential of high energy sub-PW and PW-class laser systems. In the experiment, an intense sub-picosecond laser pulse of ∼1019 Wcm−2 intensity propagates through a plasma of near critical electron density (NCD) and drives the direct laser acceleration (DLA) of plasma electrons. Low-density polymer foams were used for the production of hydrodynamically stable long-scale NCD-plasmas. Measurements show that relativistic electrons generated in the DLA-process propagate within a half angle of 2 ± 1° to the laser axis. Inside this divergence cone, an effective electron temperature of 10–13 MeV and a maximum of the electron energy of 100 MeV were reached. The high laser energy conversion efficiency into electrons with energies above 2 MeV achieved 23% with a total charge approaching 1 μC. For application purposes, we used the nuclear activation method to characterize the MeV bremsstrahlung spectrum produced in the interaction of the high-current relativistic electrons with high-Z samples and measured top yields of gamma-driven nuclear reactions. The optimization of the high-Z target geometry predicts an ultra-high MeV photon number of ∼1012 per shot at moderate relativistic laser intensity of 1019 Wcm−2. A good agreement between the experimental data and the results of the 3D-PIC and GEANT4-simulations was demonstrated. [ABSTRACT FROM AUTHOR]