학술논문

Magnitude, symmetry and attenuation of upper body accelerations during walking in women: The role of age, fall history and walking surface.
Document Type
Journal Article
Source
Maturitas. Sep2020, Vol. 139, p49-56. 8p.
Subject
*OLDER people
*YOUNG adults
*ATTENUATION coefficients
*SYMMETRY
*SQUARE root
Language
ISSN
0378-5122
Abstract
Objectives: The present experiment examined the role of age and fall history in upper body accelerations when walking on an even and on an uneven surface.Study Design: An observational cross-sectional study.Main Outcome Measures: The magnitude (root mean square [RMS]), symmetry (harmonic ratio) and attenuation (attenuation coefficient) of upper body accelerations were quantified as primary outcomes; gait spatiotemporal parameters were measured as secondary outcomes.Methods: Twenty young adults (mean ± SD age: 29.00 ± 4.51 yrs), 20 older non-fallers (66.60 ± 5.43 yrs) and 20 older fallers (68.55 ± 4.86 yrs) walked on an even and on an uneven surface, while wearing four accelerometers attached to the forehead, pelvis, right and left shanks.Results: Older fallers exhibited increased RMS acceleration in the mediolateral direction at the pelvis level compared with young adults when walking on the even surface (0.18 ± 0.04 vs. 0.14 ± 0.02, respectively), whereas walking on an uneven surface was associated with reduced magnitude of acceleration in older fallers (0.19 ± 0.04) compared with non-fallers (0.23 ± 0.04) and young adults (0.22 ± 0.03). Among other changes, walking on the uneven surface diminished pelvis-to-head attenuation in the mediolateral direction in older fallers (38.07 ± 14.51) compared with non-fallers (50.96 ± 11.03) and young adults (62.62 ± 8.21; all ps<0.05).Conclusions: Reduced mediolateral accelerations in older fallers when walking on the uneven surface can be interpreted as a compensatory mechanism to preserve stability through increased body stiffness. Reduced postural flexibility in the frontal plane compromises the central role of the trunk in minimizing the impact of gait-related oscillations to the head, as evidenced by reduced mediolateral attenuation in older fallers. [ABSTRACT FROM AUTHOR]