학술논문

Altered mechanisms of genital development identified through integration of DNA methylation and genomic measures in hypospadias.
Document Type
Article
Source
Scientific Reports. 7/29/2020, Vol. 10 Issue 1, p1-12. 12p.
Subject
*DNA methylation
*GENOMICS
*HYPOSPADIAS
*PENIS
*GENES
Language
ISSN
2045-2322
Abstract
Hypospadias is a common birth defect where the urethral opening forms on the ventral side of the penis. We performed integrative methylomic, genomic, and transcriptomic analyses to characterize sites of DNA methylation that influence genital development. In case–control and case-only epigenome-wide association studies (EWAS) of preputial tissue we identified 25 CpGs associated with hypospadias characteristics and used one-sample two stage least squares Mendelian randomization (2SLS MR) to show a causal relationship for 21 of the CpGs. The largest difference was 15.7% lower beta-value at cg14436889 among hypospadias cases than controls (EWAS P = 5.4e−7) and is likely causal (2SLS MR P = 9.8e−15). Integrative annotation using two-sample Mendelian randomization of these methylation regions highlight potentially causal roles of genes involved in germ layer differentiation (WDHD1, DNM1L, TULP3), beta-catenin signaling (PKP2, UBE2R2, TNKS), androgens (CYP4A11, CYP4A22, CYP4B1, CYP4X1, CYP4Z2P, EPHX1, CD33/SIGLEC3, SIGLEC5, SIGLEC7, KLK5, KLK7, KLK10, KLK13, KLK14), and reproductive traits (ACAA1, PLCD1, EFCAB4B, GMCL1, MKRN2, DNM1L, TEAD4, TSPAN9, KLK family). This study identified CpGs that remained differentially methylated after urogenital development and used the most relevant tissue sample available to study hypospadias. We identified multiple methylation sites and candidate genes that can be further evaluated for their roles in regulating urogenital development. [ABSTRACT FROM AUTHOR]