학술논문

Genome-wide association study on Fourier transform infrared milk spectra for two Danish dairy cattle breeds.
Document Type
Article
Source
BMC Genetics. 1/31/2020, Vol. 21 Issue 1, p1-14. 14p.
Subject
*INFRARED spectra
*DAIRY cattle breeding
*FOURIER transforms
*CHEMICAL bonds
*FOURIER analysis
*COMPOSITION of milk
*CATTLE genetics
Language
ISSN
1471-2156
Abstract
Background: Infrared spectral analysis of milk is cheap, fast, and accurate. Infrared light interacts with chemical bonds present inside the milk, which means that Fourier transform infrared milk spectra are a reflection of the chemical composition of milk. Heritability of Fourier transform infrared milk spectra has been analysed previously. Further genetic analysis of Fourier transform infrared milk spectra could give us a better insight in the genes underlying milk composition. Breed influences milk composition, yet not much is known about the effect of breed on Fourier transform infrared milk spectra. Improved understanding of the effect of breed on Fourier transform infrared milk spectra could enhance efficient application of Fourier transform infrared milk spectra. The aim of this study is to perform a genome wide association study on a selection of wavenumbers for Danish Holstein and Danish Jersey. This will improve our understanding of the genetics underlying milk composition in these two dairy cattle breeds. Results: For each breed separately, fifteen wavenumbers were analysed. Overall, more quantitative trait loci were observed for Danish Jersey compared to Danish Holstein. For both breeds, the majority of the wavenumbers was most strongly associated to a genomic region on BTA 14 harbouring DGAT1. Furthermore, for both breeds most quantitative trait loci were observed for wavenumbers that interact with the chemical bond C-O. For Danish Jersey, wavenumbers that interact with C-H were associated to genes that are involved in fatty acid synthesis, such as AGPAT3, AGPAT6, PPARGC1A, SREBF1, and FADS1. For wavenumbers which interact with –OH, associations were observed to genomic regions that have been linked to alpha-lactalbumin. Conclusions: The current study identified many quantitative trait loci that underlie Fourier transform infrared milk spectra, and thus milk composition. Differences were observed between groups of wavenumbers that interact with different chemical bonds. Both overlapping and different QTL were observed for Danish Holstein and Danish Jersey. [ABSTRACT FROM AUTHOR]