학술논문

Interkinetic nuclear movements promote apical expansion in pseudostratified epithelia at the expense of apicobasal elongation.
Document Type
Article
Source
PLoS Computational Biology. 12/23/2019, Vol. 15 Issue 12, pN.PAG-N.PAG. 1p. 1 Color Photograph, 1 Black and White Photograph, 2 Diagrams, 4 Graphs.
Subject
*TISSUE differentiation
*EPITHELIUM
*CELL nuclei
*CONGENITAL disorders
*TRACHEA
ESOPHAGEAL atresia
Language
ISSN
1553-734X
Abstract
Pseudostratified epithelia (PSE) are a common type of columnar epithelia found in a wealth of embryonic and adult tissues such as ectodermal placodes, the trachea, the ureter, the gut and the neuroepithelium. PSE are characterized by the choreographed displacement of cells' nuclei along the apicobasal axis according to phases of their cell cycle. Such movements, called interkinetic movements (INM), have been proposed to influence tissue expansion and shape and suggested as culprit in several congenital diseases such as CAKUT (Congenital anomalies of kidney and urinary tract) and esophageal atresia. INM rely on cytoskeleton dynamics just as adhesion, contractility and mitosis do. Therefore, long term impairment of INM without affecting proliferation and adhesion is currently technically unachievable. Here we bypassed this hurdle by generating a 2D agent-based model of a proliferating PSE and compared its output to the growth of the chick neuroepithelium to assess the interplay between INM and these other important cell processes during growth of a PSE. We found that INM directly generates apical expansion and apical nuclear crowding. In addition, our data strongly suggest that apicobasal elongation of cells is not an emerging property of a proliferative PSE but rather requires a specific elongation program. We then discuss how such program might functionally link INM, tissue growth and differentiation. Author summary: Pseudostratified epithelia (PSE) are a common type of epithelia characterized by the choreographed displacement of cells' nuclei along the apicobasal axis during proliferation. These so-called interkinetic movements (INM) were proposed to influence tissue expansion and suggested as culprit in several congenital diseases. INM rely on cytoskeleton dynamics. Therefore, longer term impairment of INM without affecting proliferation and adhesion is currently technically unachievable. We bypassed this hurdle by generating a mathematical model of PSE and compared it to the growth of an epithelium of reference. Our data show that INM drive expansion of the apical domain of the epithelium and suggest that apicobasal elongation of cells is not an emerging property of a proliferative PSE but might rather requires a specific elongation program. [ABSTRACT FROM AUTHOR]