학술논문

Memory CD4 T cell-derived IL-2 synergizes with viral infection to exacerbate lung inflammation.
Document Type
Article
Source
PLoS Pathogens. 8/14/2019, Vol. 15 Issue 8, p1-24. 24p.
Subject
*VIRUS diseases
*PNEUMONIA
*LUNG infections
*KILLER cells
*T helper cells
*T cells
Language
ISSN
1553-7366
Abstract
Defining the most penetrating correlates of protective memory T cells is key for designing improved vaccines and T cell therapies. Here, we evaluate how interleukin (IL-2) production by memory CD4 T cells, a widely held indicator of their protective potential, impacts immune responses against murine influenza A virus (IAV). Unexpectedly, we show that IL-2-deficient memory CD4 T cells are more effective on a per cell basis at combating IAV than wild-type memory cells that produce IL-2. Improved outcomes orchestrated by IL-2-deficient cells include reduced weight loss and improved respiratory function that correlate with reduced levels of a broad array of inflammatory factors in the infected lung. Blocking CD70-CD27 signals to reduce CD4 T cell IL-2 production tempers the inflammation induced by wild-type memory CD4 T cells and improves the outcome of IAV infection in vaccinated mice. Finally, we show that IL-2 administration drives rapid and extremely potent lung inflammation involving NK cells, which can synergize with sublethal IAV infection to promote acute death. These results suggest that IL-2 production is not necessarily an indicator of protective CD4 T cells, and that the lung environment is particularly sensitive to IL-2-induced inflammation during viral infection. [ABSTRACT FROM AUTHOR]