학술논문

Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy.
Document Type
Article
Source
Journal of Cellular Physiology. Aug2019, Vol. 234 Issue 8, p12537-12550. 14p.
Subject
*CANCER treatment
*CELL receptors
*BCL-2 genes
*TRANSFORMING growth factors-beta
*GENETIC overexpression
*CANCER cells
Language
ISSN
0021-9541
Abstract
Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients' survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor‐α and transforming growth factor‐β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF‐κB and COX‐2, which are involved in the overexpression of antiapoptosis genes such as Bcl‐2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin‐induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy. [ABSTRACT FROM AUTHOR]