학술논문

Influenza Virus Infection Enhances Antibody-Mediated NK Cell Functions via Type I Interferon-Dependent Pathways.
Document Type
Article
Source
Journal of Virology. Mar2019, Vol. 93 Issue 5, p1-23. 23p.
Subject
*INFLUENZA
*KILLER cells
*TYPE I interferons
*VIRAL antibodies
*CYTOKINES
Language
ISSN
0022-538X
Abstract
Natural killer (NK) cells are an important component in the control of influenza virus infection, acting to both clear virus-infected cells and release antiviral cytokines. Engagement of CD16 on NK cells by antibody-coated influenza virusinfected cells results in antibody-dependent cellular cytotoxicity (ADCC). Increasing the potency of antibody-mediated NK cell activity could ultimately lead to improved control of influenza virus infection. To understand if NK cells can be functionally enhanced following exposure to influenza virus-infected cells, we cocultured human peripheral blood mononuclear cells (PBMCs) with influenza virus-infected human alveolar epithelial (A549) cells and evaluated the capacity of NK cells to mediate antibody-dependent functions. Preincubation of PBMCs with influenza virus-infected cells markedly enhanced the ability of NK cells to respond to immune complexes containing hemagglutinin (HA) and anti-HA antibodies or transformed allogeneic cells in the presence or absence of a therapeutic monoclonal antibody. Cytokine multiplex, RNA sequencing, supernatant transfer, Transwell, and cytokine-blocking/cytokine supplementation experiments showed that type I interferons released from PBMCs were primarily responsible for the influenza virus-induced enhancement of antibody-mediated NK cell functions. Importantly, the influenza virus-mediated increase in antibody-dependent NK cell functionality was mimicked by the type I interferon agonist poly(I·C). We conclude that the type I interferon secretion induced by influenza virus infection enhances the capacity of NK cells to mediate ADCC and that this pathway could be manipulated to alter the potency of anti-influenza virus therapies and vaccines. [ABSTRACT FROM AUTHOR]