학술논문

Using pattern recognition to infer parameters governing mantle convection.
Document Type
Article
Source
Physics of the Earth & Planetary Interiors. Aug2016, Vol. 257, p171-186. 16p.
Subject
*PATTERN recognition systems
*EARTH'S mantle
*BOUNDARY value problems
*VISCOSITY
*STRAINS & stresses (Mechanics)
Language
ISSN
0031-9201
Abstract
The results of mantle convection simulations are fully determined by the input parameters and boundary conditions used. These input parameters can be for initialisation, such as initial mantle temperature, or can be constant values, such as viscosity exponents. However, knowledge of Earth-like values for many input parameters are very poorly constrained, introducing large uncertainties into the simulation of mantle flow. Convection is highly non-linear, therefore linearised inversion methods cannot be used to recover past configurations over more than very short periods of time, which makes finding both initial and constant simulation input parameters very difficult. In this paper, we demonstrate a new method for making inferences about simulation input parameters from observations of the mantle temperature field after billions of years of convection. The method is fully probabilistic. We use prior sampling to construct probability density functions for convection simulation input parameters, which are represented using neural networks. Assuming smoothness, we need relatively few samples to make inferences, making this approach much more computationally tractable than other probabilistic inversion methods. As a proof of concept, we show that our method can invert the amplitude spectra of temperature fields from 2D convection simulations, to constrain yield stress, surface reference viscosity and the initial thickness of primordial material at the CMB, for our synthetic test cases. The best constrained parameter is yield stress. The reference viscosity and initial thickness of primordial material can also be inferred reasonably well after several billion years of convection. [ABSTRACT FROM AUTHOR]