학술논문

What are the characteristics of participatory surveillance systems for influenza-like-illness?
Document Type
Academic Journal
Source
Journal of Global Health (J GLOBAL HEALTH), 2023; 13: 1-12. (12p)
Subject
Language
English
ISSN
2047-2978
Abstract
Background Seasonal influenza causes significant morbidity and mortality, with an estimated 9.4 million hospitalisations and 290000-650000 respiratory related-deaths globally each year. Influenza can also cause mild illness, which is why not all symptomatic persons might necessarily be tested for influenza. To monitor influenza activity, healthcare facility-based syndromic surveillance for influenza-like illness is often implemented. Participatory surveillance systems for influenza-like illness (ILI) play an important role in influenza surveillance and can complement traditional facility-based surveillance systems to provide real-time estimates of influenza-like illness activity. However, such systems differ in designs between countries and contexts, making it necessary to identify their characteristics to better understand how they fit traditional surveillance systems. Consequently, we aimed to investigate the performance of participatory surveillance systems for ILI worldwide. Methods We systematically searched four databases for relevant articles on influenza participatory surveillance systems for ILI. We extracted data from the included, eligible studies and assessed their quality using the Joanna Briggs Critical Appraisal Tools. We then synthesised the findings using narrative synthesis. Results We included 39 out of 3797 retrieved articles for analysis. We identified 26 participatory surveillance systems, most of which sought to capture the burden and trends of influenza-like illness and acute respiratory infections among cohorts with risk factors for influenza-like illness. Of all the surveillance system attributes assessed, 52% reported on correlation with other surveillance systems, 27% on representativeness, and 21% on acceptability. Among studies that reported these attributes, all systems were rated highly in terms of simplicity, flexibility, sensitivity, utility, and timeliness. Most systems (87.5%) were also well accepted by users, though participation rates varied widely. However, despite their potential for greater reach and accessibility, most systems (90%) fared poorly in terms of representativeness of the population. Stability was a concern for some systems (60%), as was completeness (50%). Conclusions The analysis of participatory surveillance system attributes showed their potential in providing timely and reliable influenza data, especially in combination with traditional hospital- and laboratory led-surveillance systems. Further research is needed to design future systems with greater uptake and utility.