학술논문

Equidistribution of the conormal cycle of random nodal sets.
Document Type
Journal
Author
Dang, Nguyen Viet (F-ULIL-LM) AMS Author Profile; Rivière, Gabriel (F-ULIL-LM) AMS Author Profile
Source
Journal of the European Mathematical Society (JEMS) (J. Eur. Math. Soc. (JEMS)) (20180101), 20, no.~12, 3017-3071. ISSN: 1435-9855 (print).eISSN: 1435-9863.
Subject
35 Partial differential equations -- 35P Spectral theory and eigenvalue problems
  35P20 Asymptotic distribution of eigenvalues and eigenfunctions

35 Partial differential equations -- 35R Miscellaneous topics
  35R01 Partial differential equations on manifolds

58 Global analysis, analysis on manifolds -- 58A General theory of differentiable manifolds
  58A25 Currents

60 Probability theory and stochastic processes -- 60D Geometric probability and stochastic geometry
  60D05 Geometric probability and stochastic geometry
Language
English
Abstract
Let $(M,g)$ be a closed, oriented Riemannian manifold, and let $H_\Lambda$ be the subspace of $L^2(M)$ that is spanned by the eigenfunctions of the Laplacian on $M$ that correspond to the eigenvalues $\leq N^2$. Let $N(\Lambda)$ be the dimension of $H_\Lambda$, and let $\mu_\Lambda$ be the Gaussian measure on $H_\Lambda$ with the standard deviation $1/\sqrt{N(\Lambda)}$. The nodal set of almost every (with respect to the measure $\mu_\Lambda$) function $f\in H_\Lambda$ is a smooth hyper-surface in $M$; for a compactly supported $n$-form on $T^*M$, $\langle N^*(f=0),\omega\rangle$ is the integral of $\omega$ over the conormal bundle of the nodal set of $f$. The main result of the paper under review is that $$ \int_{H_\Lambda}\langle N^*(f=0),\omega\rangle d\mu_\Lambda=C_n\Lambda^n\int_{T*M}\pi^*\Omega_g\wedge \omega+O(\Lambda^{n-1}), $$ where $\pi^*\Omega_g$ is the lift to $T^*M$ of the volume form on $M$ and $C_n$ is an explicit constant; $C_n\ne 0$ for odd values of $n$ and $C_n=0$ for even values of $n$. The proof uses the technique of Berezin integrals.