학술논문

Nonlinear boundary equations of one-sided boundary value problems in the mechanics of the contact of elastic bodies.
Document Type
Journal Translation
Author
Galanov, B. A. AMS Author Profile
Source
Soviet Mathematics (Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika) (Soviet Math. (Iz. VUZ) ) (1989), no.~3, 82--85 ISSN: 01977156.
Subject
73 Mechanics of solids -- 73T Contact and surface mechanics
  73T05 Contact problems
Language
Russian
Abstract
The author considers the following model contact problem: In the half-space $x_3>0$ find a harmonic function $u(x)$ with $u(x)=O(|x|^{-1})$ for $|x|\to\infty$, a closed domain $S\subseteq\Omega\subset\bold R^2=\{x\colon x_3=0\}$, and a vector $h=(h_1,h_2,h_3)$ such that the following conditions are satisfied: $2\pi\lambda u(x)=g(x)$, $u_{x_3}(x)\geq 0$ for $x\in S$, $2\pi\lambda u(x)>g(x)$ for $x\in\Omega\sbs S$, $u_{x_3}(x)=0$ for $x\in\bold R^2\sbs S$, $\int_Su_{x_3}(x)dS_x=P$, $\int_Sx_2u_{x_3}(x)dS_x=M_x$, $\int_Sx_1u_{x_3}(x)dS_x=M_y$, $g(x)=h_1+h_2x_2+H_3x_1-f(x_1,x_2)$, $f(x_1,x_2)\geq 0$, $\lambda={\rm const}>0$. Here $f(x)\in L_q(\Omega)$, $1< q<4$, $P_0=(P,M_x,M_y)\in\bold R^3$, $P>0$, are given. By means of the potential $u(x)=(2\pi)^{-1}\int_S|x-y|^{-1}p(y)dS_y$, $x\in S$, the problem of determining $(p,S,h)$ is reduced to the equations $(*)$ $\mu Jv^-+\lambda Kv^+=g$, $Iv^+=P$, $Ix_2v^+=M_x$, $Ix_1v^+=M_y$, where $v^+(x)=\sup\{v(x),0\}$, $v^-(x)=\inf\{v(x),0\}$, $p=v^+$, $S=\{x\colon v\geq 0\}$, $J$ is the duality mapping of $L_r$, $K$ a strongly positive, compact, and selfadjoint operator from $L_r$ in $L_q$ for $\frac430$, for $w_\epsilon=(v_\epsilon,h_\epsilon)$ in the space $F=L_r(\Omega)\times{\bf R}^3$, $\|w\|_F=\|v\|_{L^r}+\|h\|_{\bold R^3}$. The system $(**)$ has a unique solution $w_\epsilon\in F$ for every $\epsilon>0$. The system $(*)$ has a unique solution $w=(v,h)\in F$ if and only if $\|w_\epsilon\|_F\leq c$ for all $\epsilon\in(0,\epsilon_0]$. In this case $\|w_\epsilon-w\|_F\to 0$ holds for $\epsilon\to 0$.

Online Access