학술논문

Cosection localization and the Quot scheme ${\rm Quot}^l_{S}(\Cal E)$.
Document Type
Journal
Author
Stark, Samuel (4-ICL-M) AMS Author Profile
Source
Proceedings A (Proc. A.) (20220101), 478, no. 2268, Paper No 20220419, 16 pp. ISSN: 1364-5021 (print).eISSN: 1471-2946.
Subject
14 Algebraic geometry -- 14C Cycles and subschemes
  14C05 Parametrization
Language
English
ISSN
14712946
Abstract
The author uses cosection localization, a fundamental technique inenumerative algebraic geometry, to show that the virtual fundamentalcycle $[\roman{Quot}_S^l({\Cal E})]^{\roman{vir}}$ of the Quot scheme$\roman{Quot}_S^l({\Cal E})$ of length $l$ quotients of a rank $r$,locally free sheaf $\Cal E$ on a surface $S$ can be explicitlylocalized to the virtual fundamental cycle of the Quot scheme of length$l$ quotients of the restriction ${\Cal E}|_C$ to a canonical curve $C\subset S$, which is a smooth Quot scheme. This in turn allows theauthor to obtain a structure theorem for virtual tautological integralsover $[\roman{Quot}_S^l({\Cal E})]^{\roman{vir}}$, a direct analogue ofa prior result of Ellingsrud, Göttsche and Lehn, and give geometricproofs of statements about the virtual Euler characteristic, virtualSegre series and virtual tautological integrals of line bundles on$\roman{Quot}_S^l({\Cal E})$, using recent results by Oprea andPandharipande et al.