학술논문

A survey on the Muskhelishvili-Omnès equation.
Document Type
Journal
Author
Ferrari, E. AMS Author Profile
Source
Rivista del Nuovo Cimento. Serie 2 (Riv. Nuovo Cimento (2)) (19760101), 6, no. 2, 199-216.
Subject
81 Quantum theory
  81.45 Integral equations
Language
English
Abstract
In the analysis of scattering phenomena, one encounters dispersionrelations of the form$F(x)=f(x)+\lim_{\varepsilon\rightarrow+0}\pi^{-1}\int_1^\infty[\text{Im}\,F(x')]\ [x'-x-i\varepsilon]^{-1}\,dx'$.The present paper is a mathematical survey of the properties of thesolutions of this equation for $F(x)$. For elastic scattering,$\text{Im}\,F(x)=\exp[-i\delta(x)]\sin\delta(x)F(x)$, where $\delta$ isreal-valued. For this case the author describes and compares the solutionsgiven by M. Gourdin and A. Martin [Nuovo Cimento {\bf 8} (1958), no. 5,699--707; RŽMat {\bf 1960} \#6613] and by R. Omnès [ibid. {\bf 8}(1958), 316--326; MR0094169 (20 \#688)] and discusses the possibility of usingsubtracted integrals in this approach. For inelastic scattering, the simpleuse of elastic unitarity and a complex phase shift $\delta$ leads toinconsistencies. The author then describes a satisfactory solution based onthe use of complete unitarity, given in a recent paper by T. N. Pham and T.N. Truong [Phys. Rev. D {\bf 14} (1976), 185--188].

Online Access