학술논문

Stability of long-sustained oscillations induced by electron tunneling
Document Type
Source
Physical Review Research. 6(1)
Subject
Language
English
ISSN
26431564
Abstract
Self-oscillations are the result of an efficient mechanism generating periodic motion from a constant power source. In quantum devices, these oscillations may arise due to the interaction between single electron dynamics and mechanical motion. We show that, due to the complexity of this mechanism, these self-oscillations may irrupt, vanish, or exhibit a bistable behavior causing hysteresis cycles. We observe these hysteresis cycles and characterize the stability of different regimes in both single- and double-quantum-dot configurations. In particular cases, we find these oscillations stable for over 20 s, many orders of magnitude above electronic and mechanical characteristic timescales, revealing the robustness of the mechanism at play.