학술논문

Modular 3D printed platform for fluidically connected human brain organoid culture
Document Type
Source
Biofabrication StemTherapy: National Initiative on Stem Cells for Regenerative Therapy MultiPark: Multidisciplinary research focused on Parkinson´s disease. 1(15014)
Subject
3D culture
3D printing
brain organoids
modular design
neuroscience
stereolithography
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Cell- och molekylärbiologi
Medical and Health Sciences
Basic Medicine
Cell and Molecular Biology
Language
English
ISSN
1758-5082
Abstract
Brain organoid technology has transformed both basic and applied biomedical research and paved the way for novel insights into developmental processes and disease states of the human brain. While the use of brain organoids has been rapidly growing in the past decade, the accompanying bioengineering and biofabrication solutions have remained scarce. As a result, most brain organoid protocols still rely on commercially available tools and culturing platforms that had previously been established for different purposes, thus entailing suboptimal culturing conditions and excessive use of plasticware. To address these issues, we developed a 3D printing pipeline for the fabrication of tailor-made culturing platforms for fluidically connected but spatially separated brain organoid array culture. This all-in-one platform allows all culturing steps—from cellular aggregation, spheroid growth, hydrogel embedding, and organoid maturation—to be performed in a single well plate without the need for organoid manipulation or transfer. Importantly, the approach relies on accessible materials and widely available 3D printing equipment. Furthermore, the developed design principles are modular and highly customizable. As such, we believe that the presented technology can be easily adapted by other research groups and fuel further development of culturing tools and platforms for brain organoids and other 3D cellular systems.