학술논문

Nanocomposite SAC solders: the effect of adding CoPd nanoparticles on the morphology and the shear strength of the Sn–3.0Ag–0.5Cu/Cu solder joints
Document Type
Source
Applied Nanoscience. 10:4603-4607
Subject
Sn–3.0Ag–0.5Cu
CoPd nanoparticles
Microstructure
Shear strength
Language
English
ISSN
2190-5509
2190-5517
Abstract
The effect of bimetallic monodisperse CoPd nanoparticles on the microstructure and the shear strength of the Cu/ SAC305/Cu solder joint was investigated. The nanocomposite Sn–3.0Ag–0.5Cu (SAC305) solders with 0.1, 0.3, 0.5, and 1.0 wt% nanoCoPd were prepared through a paste mixing method. The employed bimetallic nanoparticles were produced via a modified oleylamine method. The microstructural analysis of as-solidified Cu/solder/Cu joints was performed by scanning electron microscopy. The results showed that initial additions of CoPd nanoparticles into the SAC305 solder promoted the growth of the interfacial planar-type Cu3Sn IMC layer; while the average thickness of the interfacial scallop-type Cu6Sn5 IMC layer slightly decreased. Further additions of the nanosized CoPd admixtures to the SAC305 solder paste lead to a significant increase of the average thickness of the Cu6Sn5 intermetallic compound layer up to 40%. The shear strength measurements were performed to investigate a relationship between the microstructure and mechanical properties of the investigated solder joints. The results indicated a decrease in the shear strength of the SAC305 solder joint by addition of 0.1 wt% CoPd NPs, while a difference in absolute values between solder joints with 0.3, 0.5, and 1.0 wt% nanoCoPd was practically insignificant.