학술논문

Clonal origins of cells in the pigmented retina of the zebrafish eye
Document Type
Journal Article
Author
Source
Dev. Biol.; (United States); 131:1
Subject
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT. MOSAICISM
RADIOINDUCTION
RETINA
CELL DIFFERENTIATION
CLONE CELLS
EMBRYOS
FISHES
GAMMA RADIATION
PIGMENTS
RECESSIVE MUTATIONS
ANIMALS
AQUATIC ORGANISMS
BODY
BODY AREAS
CELL CULTURES
ELECTROMAGNETIC RADIATION
EYES
FACE
HEAD
IONIZING RADIATIONS
MUTATIONS
ORGANS
RADIATIONS
SENSE ORGANS
VERTEBRATES 560152* -- Radiation Effects on Animals-- Animals
Language
English
Abstract
Mosaic analysis has been used to study the clonal basis of the development of the pigmented retina of the zebrafish, Brachydanio rerio. Zebrafish embryos heterozygous for a recessive mutation at the gol-1 locus were exposed to gamma-irradiation at various developmental stages to create mosaic individuals consisting of wild-type pigmented cells and a clone of pigmentless (golden) cells in the eye. The contribution of individual embryonic cells to the pigmented retina was measured and the total number of cells in the embryo that contributed descendants to this tissue was determined. Until the 32-cell stage, almost every blastomere has some descendants that participate in the formation of the pigmented retina of the zebrafish. During subsequent cell divisions, up to the several thousand-cell stage, the number of ancestral cells is constant: approximately 40 cells are present that will give rise to progeny in the pigmented retina. Analysis of the size of clones in the pigmented retina indicates that the cells of this tissue do not arise through a rigid series of cell divisions originating in the early embryo. The findings that each cleavage stage cell contributes to the pigmented retina and yet the contribution of such cells is highly variable are consistent with the interpretation that clonal descendants of different blastomeres normally intermix extensively prior to formation of the pigmented retina.