학술논문

Antibacterial potential and cytotoxic activity of iron oxide nanoparticles conjugated with thymol (Fe3O4@Glu-Thymol) on breast cancer cells and investigating the expression of BAX, CASP8, and BCL-2 genes
Document Type
Original Paper
Source
BioMetals: An International Journal on the Role of Metal Ions in Biology, Biochemistry and Medicine. 36(6):1273-1284
Subject
Breast cancer
Iron oxide
Nanoparticles
Thymol
Language
English
ISSN
0966-0844
1572-8773
Abstract
The use of metal nanoparticles (NPs) conjugated with natural herbal molecules in biomedical applications has been growing. In this work, we synthesized Iron oxide NPs conjugated with thymol (Fe3O4@Glu-Thymol) and investigated their antibacterial and anticancer potentials. Physicochemical features of the NPs were studied by FT-IR, EDS-mapping, XRD, DLS, zeta potential, and electron microscopy. The antibacterial activity of the NPs against Pseudomonas aeruginosa and anticancer activity for breast cancer cells was investigated by broth microdilution and MTT and flow cytometry assays, respectively. The expression of apoptosis signaling genes in breast cancer cells that were treated with the NPs was studied by qPCR assay. The NPs were spherical, in a size range of 40–66 nm, without impurities, and with zeta potential and hydrodynamic size of − 23 mV and 185 nm, respectively. Moreover, the FT-IR and XRD assays confirmed the proper synthesis of Fe3O4 and conjugation with thymol. The minimum inhibitory concentration of the NPs for P. aeruginosa strains was 64–128 µg/mL. Our results showed that Fe3O4@Glu-Thymol was considerably more toxic for breast cancer cells than normal human cells and the 50% inhibitory concentration were 90.4 and 322 µg/mL, respectively. Upon treating breast cancer cells with the NPs the frequency of cell apoptosis increased by 18.9%. Also, the expression of the BAX and CASP8 genes in NPs treated cells significantly increased by 1.75 and 2.25 folds, respectively while the BCL-2 gene remained almost constant. This study reveals that Fe3O4@Glu-Thymol has considerable potential to be used in biomedical fields.