학술논문

Indian Ocean glacial deoxygenation and respired carbon accumulation during mid-late Quaternary ice ages
Document Type
Original Paper
Source
Nature Communications. 14(1)
Subject
Language
English
ISSN
2041-1723
Abstract
Reconstructions of ocean oxygenation are critical for understanding the role of respired carbon storage in regulating atmospheric CO2. Independent sediment redox proxies are essential to assess such reconstructions. Here, we present a long magnetofossil record from the eastern Indian Ocean in which we observe coeval magnetic hardening and enrichment of larger, more elongated, and less oxidized magnetofossils during glacials compared to interglacials over the last ~900 ka. Our multi-proxy records of redox-sensitive magnetofossils, trace element concentrations, and benthic foraminiferal Δδ13C consistently suggest a recurrence of lower O2 in the glacial Indian Ocean over the last 21 marine isotope stages, as has been reported for the Atlantic and Pacific across the last glaciation. Consistent multi-proxy documentation of this repeated oxygen decline strongly supports the hypothesis that increased Indian Ocean glacial carbon storage played a significant role in atmospheric CO2 cycling and climate change over recent glacial/interglacial timescales.
Ocean oxygenation regulates respired carbon storage and atmospheric CO2. This study applied a novel analysis using magnetic nanoparticle fossils and found glacial Indian Ocean oxygen decline and carbon accumulation to explain recent climate cycles.