학술논문

The Investigation of Gate Oxide and Temperature Changes on Electrostatic and Analog/RF and Behaviour of Nanotube Junctionless Double-Gate-All Around (NJL-DGAA) MOSFETs using Si Nano-materials
Document Type
Original Paper
Source
Silicon. 15(12):5197-5208
Subject
Cut-of frequency
Drain current
DIBL
Intrinsic gain
Silicon materials
Transconductance
Language
English
ISSN
1876-990X
1876-9918
Abstract
Nanotube Junction-less Double-Gate-All-Around (NJL-DGAA) MOSFETs using Si nanomaterials or nano particle emerged as an appealing option for the design of high-speed ULSI processors. Changes in ambient temperature, on the other hand, have an effect on its performance such as hot carrier injection (HCI) degradation, analog/RF performance, and electrostatic performance that must be examined. The influence of temperature and oxide changes on the performance parameters of the Nanotube Junctionless Double-Gate-All-Around (NJL-DGAA) MOSFET has been investigated in this research for performance enhancement utilising the Silvaco 3D simulator. NJL-DGAA MOSFETs are evaluated for a variety of parameters including subthreshold swing (SS), ON-current, DIBL, OFF-current, and transconductance at temperatures changes from 250°K to 350° K. In addition, the analog/RF performance of NJL-DGAA MOSFETs for various semiconductor high k gate dielectric materials was investigated. Enhance thickness of the oxide layer with a high semiconductor dielectric constant to equivalent-oxide-thickness (EOT) and reduce leakage current, which are correlated with transistor speed. According to the performance evaluation, NJL-DGAA provides better analog/RF performance for high-frequency and low-power applications at high k gate dielectric material.