학술논문

Hepatic nutrient and hormone signaling to mTORC1 instructs the postnatal metabolic zonation of the liver
Document Type
Original Paper
Source
Nature Communications. 15(1)
Subject
Language
English
ISSN
2041-1723
Abstract
The metabolic functions of the liver are spatially organized in a phenomenon called zonation, linked to the differential exposure of portal and central hepatocytes to nutrient-rich blood. The mTORC1 signaling pathway controls cellular metabolism in response to nutrients and insulin fluctuations. Here we show that simultaneous genetic activation of nutrient and hormone signaling to mTORC1 in hepatocytes results in impaired establishment of postnatal metabolic and zonal identity of hepatocytes. Mutant hepatocytes fail to upregulate postnatally the expression of Frizzled receptors 1 and 8, and show reduced Wnt/β-catenin activation. This defect, alongside diminished paracrine Wnt2 ligand expression by endothelial cells, underlies impaired postnatal maturation. Impaired zonation is recapitulated in a model of constant supply of nutrients by parenteral nutrition to piglets. Our work shows the role of hepatocyte sensing of fluctuations in nutrients and hormones for triggering a latent metabolic zonation program.
The liver is segregated into spatially organized areas that serve distinct functions, though how these zones are patterned remains unclear. Here they show that mTORC1 controls spatial segregation of liver metabolic functions via modulation of Wnt signaling, and find that impaired zonation is also observed in pigs given total parenteral nutrition.