학술논문

Autonomous dynamic control of DNA nanostructure self-assembly
Document Type
Original Paper
Source
Nature Chemistry. 11(6):510-520
Subject
Language
English
ISSN
1755-4330
1755-4349
Abstract
Biological cells routinely reconfigure their shape using dynamic signalling and regulatory networks that direct self-assembly processes in time and space, through molecular components that sense, process and transmit information from the environment. A similar strategy could be used to enable life-like behaviours in synthetic materials. Nucleic acid nanotechnology offers a promising route towards this goal through a variety of sensors, logic and dynamic components and self-assembling structures. Here, by harnessing both dynamic and structural DNA nanotechnology, we demonstrate dynamic control of the self-assembly of DNA nanotubes—a well-known class of programmable DNA nanostructures. Nanotube assembly and disassembly is controlled with minimal synthetic gene systems, including an autonomous molecular oscillator. We use a coarse-grained computational model to capture nanotube length distribution dynamics in response to inputs from nucleic acid circuits. We hope that these results may find use for the development of responsive nucleic acid materials, with potential applications in biomaterials science, nanofabrication and drug delivery.
Nucleic acid nanotechnology offers a promising route towards the design and synthesis of reconfigurable biomolecular materials. Now, the combination of dynamic and structural DNA nanotechnology has enabled the dynamic control of the assembly and disassembly of DNA nanotubes. The process involves minimal synthetic gene systems, including an autonomous molecular oscillator.