학술논문

Effect of drugs on bone mineral density in postmenopausal osteoporosis: a Bayesian network meta-analysis
Document Type
Review Paper
Source
Journal of Orthopaedic Surgery and Research. 16(1)
Subject
Osteoporosis
Bone mineral density
Drugs
Denosumab
Language
English
ISSN
1749-799X
Abstract
Background: Osteoporosis affects mostly postmenopausal women, leading to deterioration of the microarchitectural bone structure and low bone mass, with an increased fracture risk with associated disability, morbidity and mortality. This Bayesian network meta-analysis compared the effects of current anti-osteoporosis drugs on bone mineral density.Methods: The present systematic review and network meta-analysis follows the PRISMA extension statement to report systematic reviews incorporating network meta-analyses of health care interventions. The literature search was performed in June 2021. All randomised clinical trials that have investigated the effects of two or more drug treatments on BMD for postmenopausal osteoporosis were accessed. The network comparisons were performed through the STATA Software/MP routine for Bayesian hierarchical random-effects model analysis. The inverse variance method with standardised mean difference (SMD) was used for analysis.Results: Data from 64 RCTs involving 82,732 patients were retrieved. The mean follow-up was 29.7 ± 19.6 months. Denosumab resulted in a higher spine BMD (SMD −0.220; SE 3.379), followed by pamidronate (SMD −5.662; SE 2.635) and zoledronate (SMD −10.701; SE 2.871). Denosumab resulted in a higher hip BMD (SMD −0.256; SE 3.184), followed by alendronate (SMD −17.032; SE 3.191) and ibandronate (SMD −17.250; SE 2.264). Denosumab resulted in a higher femur BMD (SMD 0.097; SE 2.091), followed by alendronate (SMD −16.030; SE 1.702) and ibandronate (SMD −17.000; SE 1.679).Conclusion: Denosumab results in higher spine BMD in selected women with postmenopausal osteoporosis. Denosumab had the highest influence on hip and femur BMD.Level of evidence: Level I, Bayesian network meta-analysis of RCTs