학술논문

Arterial to end-tidal CO2 gradients during isocapnic hyperventilation
Document Type
Original Paper
Source
Journal of Clinical Monitoring and Computing. 37(1):311-317
Subject
Isocapnic hyperventilation
Dead space ventilation
Rebreathing
Gradient
Capnometry
CO2
Language
English
ISSN
1387-1307
1573-2614
Abstract
Isocapnic hyperventilation (ICHV) is occasionally used to maintain the end-expired CO2 partial pressure (PETCO2) when the inspired CO2 (PICO2) rises. Whether maintaining PETCO2 with ICHV during an increase of the PICO2 also maintains arterial PCO2 (PaCO2) remains poorly documented. 12 ASA PS I–II subjects undergoing a robot-assisted radical prostatectomy (RARP) (n = 11) or cystectomy (n = 1) under general endotracheal anesthesia with sevoflurane in O2/air (40% inspired O2) were enrolled. PICO2 was sequentially increased from 0 to 0.5, 1.0, 1.5 and 2% by adding CO2 to the inspiratory limb of the circle system, while increasing ventilation to a target PETCO2 of 4.7–4.9% by adjusting respiratory rate during controlled mechanical ventilation. Pa-ETCO2 gradients were determined after a 15 min equilibration period at each PICO2 level and compared using ANOVA. Mean (standard deviation) age, height, and weight were 66 (6) years, 171 (6) cm, and 75 (8) kg, respectively. Capnograms were normal and hemodynamic parameters remained stable. PETCO2 could be maintained within 4.7–4.9% in all subjects at all times except in 1 subject with 1.5% PICO2 and 5 subjects with 2.0% PICO2; data from the one subject in whom both 1.5 and 2.0% PICO2 resulted in PETCO2 > 5.1% were excluded from analysis. Pa-ETCO2 gradients did not change when PICO2 increased. The effect of a modest rise of PICO2 up to 1.5% on PETCO2 during RARP can be readily overcome by increasing ventilation without altering the Pa-ETCO2 gradients. At higher PICO2, airway pressures may become a limiting factor, which requires further study.