학술논문

Downregulation of Sirt3 contributes to β-cell dedifferentiation via FoxO1 in type 2 diabetic mellitus
Document Type
Original Paper
Source
Acta Diabetologica. 61(4):485-494
Subject
Sirt3
β-Cell
High glucose
Dedifferentiation
FoxO1
T2DM
Language
English
ISSN
1432-5233
Abstract
Aims: FoxO1 is an important factor in the β-cell differentiation in type 2 diabetes mellitus (T2DM). Sirt3 is found to be involved in FoxO1 function. This study investigated the role of Sirt3 in the β-cell dedifferentiation and its mechanism.Methods: Twelve-week-old db/db mice and INS1 cells transfected with Sirt3-specific short hairpin RNA (shSirt3) were used to evaluate the dedifferentiation of β-cell. Insulin levels were measured by enzyme linked immunosorbent assay. The proteins of Sirt3, T-FoxO1, Ac-FoxO1 and differentiation indexes such as NGN3, OCT4, MAFA were determined by western blot or immunofluorescence staining. The combination of Sirt3 and FoxO1 was determined by the co-immunoprecipitation assay. The transcriptional activity of FoxO1 was detected by dual luciferase reporter assay.Results: Both the in vivo and in vitro results showed that Sirt3 was decreased along with β-cell dedifferentiation and decreased function of insulin secretion under high glucose conditions. When Sirt3 was knocked down in INS1 cells, increased β-cell dedifferentiation and lowered insulin secretion were observed. This effect was closely related to the amount loss and the decreased deacetylation of FoxO1, which resulted in a reduction in transcriptional activity.Conclusion: Downregulation of Sirt3 contributes to β-cell dedifferentiation in high glucose via FoxO1. Intervention of Sirt3 may be an effective approach to prevent β-cell failure in T2DM.