학술논문

Synergistic Effects of Carbon Nanotubes (CNTs) and White Graphite (h-BN) on the Microstructure and Mechanical Properties of Aluminum Matrix Composites
Document Type
Original Paper
Source
Arabian Journal for Science and Engineering. :1-14
Subject
Aluminum matrix composites
White graphite
Carbon nanotubes
Mechanical properties
Microstructure
Language
English
ISSN
2193-567X
2191-4281
Abstract
The increased demand for lightweight structural materials in the transport sector has compelled researchers to develop materials with high strength and reduced structural weight, aiming to enhance vehicle performance, minimize fuel and oil consumption and reduce CO2 emissions. However, their structural weight and strength still need to be improved. Herein, an attempt has been made to fabricate aluminum-based composites reinforced with hexagonal boron nitride (h-BN: 1,3,5,7 wt% ) and multi-walled carbon nanotubes (MWCNTs: 0.25, 0.5, 0.75, 1 wt%) through powder processing method. The results revealed that the 3BN/Al composite disclosed better densification (96.8%) and hardness (49 ± 1.5) among all BN/Al composites. Furthermore, the addition of 0.5 wt% CNTs to BN/Al composite significantly improved the densification (97.7%), Vickers hardness (106%) and tensile strength (189%) over pure Al. This improvement was attributed to homogeneously distributed h-BN and CNTs in the Al matrix and the formation of hard aluminum carbide (Al4C3) phase. The results demonstrate that BN/CNTs/Al composite exhibits superior mechanical strength, making them promising structural and functional materials for aerospace and automobile industries.