학술논문

Nanoparticles of two ZnO Precursors as an Encapsulating Matrix of Mangiferin: Associated Studies to Cytotoxic Effects on Liver Cancer Cells Hep-G2 and Healthy Lung Cell Beas-2B
Document Type
Original Paper
Source
Journal of Cluster Science: Including Nanoclusters and Nanoparticles. 33(1):163-171
Subject
ZnO precursors
Mangiferin
Anticiclooxigenase
Antitopoisomerase and toxicity
Language
English
ISSN
1040-7278
1572-8862
Abstract
In recent years, metal oxides have been studied as an encapsulating matrix nevertheless, few studies the effect that can exist between different precursors to form this type of nanomaterials; In this paper, we compare its ability as a mangiferin (MG) nanoencapsulated. Phytochemical that has been studied for its generous biological properties like anti-inflammatory, antiproliferative, and others; the nanoparticles (NP’s) be synthesized with zinc nitrate and zinc acetate. The results showed modifications in the morphology of the ZnO associated with the precursor but, there is no significant difference between any treatment that is associated with antitopoisomerase activity however, ZnOA-MG is statistically the best treatment by reducing in greater proportion the production of COX-II prostaglandins (97.38 ± 7.09%) with a significant difference (p < 0.05) compared toCOX-I (68.02 ± 2.14%) but, it is not considered a selective treatment moreover ZnOA-MG proved to be the least hepatotoxic (IC50, 140.19 ± 13.10 µg/mL) while ZnON is the most cytotoxic for HEP-G2 and BEAS-2B (IC50, 51.27 ± 4.72 and 26.91 ± 3.21 µg/mL). All treatments change the morphology of erythrocytes to low concentrations (25 µg/mL). Therefore the MG load benefits the biological impact of ZnO.