학술논문

Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method
Document Type
Original Paper
Source
Nature Communications. 14(1)
Subject
Language
English
ISSN
2041-1723
Abstract
The galvanostatic intermittent titration technique (GITT) is considered the go-to method for determining the Li+ diffusion coefficients in insertion electrode materials. However, GITT-based methods are either time-consuming, prone to analysis pitfalls or require sophisticated interpretation models. Here, we propose the intermittent current interruption (ICI) method as a reliable, accurate and faster alternative to GITT-based methods. Using Fick’s laws, we prove that the ICI method renders the same information as the GITT within a certain duration of time since the current interruption. Via experimental measurements, we also demonstrate that the results from ICI and GITT methods match where the assumption of semi-infinite diffusion applies. Moreover, the benefit of the non-disruptive ICI method to operando materials characterization is exhibited by correlating the continuously monitored diffusion coefficient of Li+ in a LiNi0.8Mn0.1Co0.1O2-based electrode to its structural changes captured by operando X-ray diffraction measurements.
The galvanostatic intermittent titration technique (GITT) is the state-of-the-art method for determining the Li+ diffusion coefficients in battery materials. Here, authors propose the intermittent current interruption method as a reliable, accurate and faster alternative to GITT-based methods.