학술논문

Photo-triggered pulsed cavity compressor for bright electron bunches in ultrafast electron diffraction
Document Type
Original Paper
Source
Applied Physics B: Lasers and Optics. November 2012 109(2):249-257
Subject
Language
English
ISSN
0946-2171
1432-0649
Abstract
Temporally resolved observation of microscopic structural dynamics of solids with ultrafast electron diffraction (UED) requires extremely short pulsed, highly charged, monoenergetic electron beams with sufficient transverse coherence length of several unit cells of the investigated samples. However, Coulomb repulsion defeats these parameters in free propagation of an electron pulse initially bright on the photo cathode. We demonstrate a new electron pulse compressor design based on a simple and compact RF structure incorporating a pair of gallium arsenide photoconductive semiconductor switches that are triggered by femtosecond laser pulses, thereby providing a longitudinal voltage gradient of up to 20 V/ps. Our proof of principle experiment achieved compression of bunches containing 26,000 electrons to a duration of below 750 fs and a beam diameter of 300 μm in the temporal and spatial focus of the device while maintaining the good beam collimation required for time resolved electron diffraction experiments. The simplicity of the compressor provides a strong incentive for its further development toward practical implementation in sub-relativistic UED experiments requiring the highest possible source brightness.