학술논문

Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase
Document Type
Original Paper
Source
Nature Chemical Biology. 13(8):850-857
Subject
Language
English
ISSN
1552-4450
1552-4469
Abstract
High-throughput screening and structure-guided design identified small-molecule inhibitors that prevent the interaction between N-terminally acetylated E2 conjugating enzyme UBE2M and DCN1, an E3 ligase for the ubiquitin-like protein Nedd8.
N-terminal acetylation is an abundant modification influencing protein functions. Because ∼80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.